profile-img
Tanu Sharma posted an Question
August 31, 2020 • 13:19 pm 30 points
  • IIT JAM
  • Mathematical Statistics (MS)

Onto and kernel?

ransromaton from v, to V2 anstormation Example: Show that the mapping f: V.(F)> V,(F) which is defined by f(a,, a, a) = (a, a) is a homomorphism from V, onto V,. Also find its kernel. Solution. Let a = (a,, a,, a,) and b = (b,, b, b) be any two elements of the space V,(F) and a, be F, then f(aa+ bp) = f[(a(a,, a,, a,) + b(b,, b b.)] = f[(aa,, aa,, aa)+ (bb,, bb, bb,)] = f(aa, + bb,, aa,+ bb, aa, + bb) (aa, + bb,, aa, + bb) a(a,, b,) + b{b,, b) affa,, a, a,) + bf(b,, b, b.) af(a)+ bf(B) fis a homomorphism from space V, to V, a(b,b,b,) b(b 5b) Onto: Let (a,, a,) e V then corresponding to (a,, a), there exist (a,, a, 0) e V, for which fa a, 0) (a,, a) there exist f-pre image of each element of V, in V, f is onto homomorphism. Kernel: Let Ker f = K, then K will be the set of all the those vectors of V. which zero vector (0, 0) of V, i.e. (a exist (a,, a. 0) e V, for which f(a, h map on the K= {(a,, a, a) e V,I f(a,, a,, a,) = (0, 0)) f(a, a, a) (0, 0)(a, a,) = (0, 0) a, 0 and a, 0o K {(0, 0, a)a, e F But

1 Answer(s) Answer Now
  • 0 Likes
  • 2 Comments
  • 0 Shares
whatsapp-btn

Do You Want Better RANK in Your Exam?

Start Your Preparations with Eduncle’s FREE Study Material

  • Updated Syllabus, Paper Pattern & Full Exam Details
  • Sample Theory of Most Important Topic
  • Model Test Paper with Detailed Solutions
  • Last 5 Years Question Papers & Answers